Effect of a Diode Laser on Actinobacillus actinomycescomitans

Lasers have been used in periodontics for the past two decades to débride periodontal pockets, as well as for a variety of other applications including gingivectomy, gingivoplasty, subepithelial curettage, frenectomy, biopsy removal of granulation tissue, exposure of dental implants, and hemostasis following surgical procedures. Accordingly, there is continuing interest in the efficacy of dental lasers in treating periodontal disease.

A recent study in 26 patients evaluated the effect of application of a diode laser (Odysey 810, Ivoclar, NA, Buffalo, NY, USA) on the oral microflora of periodontal pockets. One test and one control periodontal pocket 2.5 mm on posterior teeth were selected in 26 adults with generalized moderate chronic periodontitis. The control pocket was treated by scaling and root planing. The test pocket was treated both by scaling and root planing and by an AlGaAs diode laser for 30 seconds at 0.8 W. Periodontal indices including gingival index, plaque index, pocket depth, attachment level, and gingival recession were evaluated at baseline, 6 weeks, and 3 and 6 months. Subgingival plaque samples obtained before and after treatment and at 3 and 6 months after treatment were evaluated for bacterial cell counts, morphotypes, and specific periodontal pathogens. The results of the study showed that therapy with an AlGaAs diode laser plus scaling and root planing showed no adverse effects. On the contrary, there was more rapid gingival healing, and 70% of the patients reported less soft tissue discomfort and tooth sensitivity in sites treated with the diode laser. Diode laser–treated sites also exhibited significantly lower numbers and proportion of subgingival Actinobacillus actinomycescomitans.

Studies with a neodymium:yttrium-aluminum-garnet (Nd:YAG) laser have shown beneficial effects on reduction of periodontal pathogens.22 Diode lasers in which coherent light is produced from an electrical current passed through a semiconductor have also been studied for their efficacy in the treatment of periodontal pockets. Kreisler and colleagues reported that periodontal pockets treated both by AlGaAs scaling and root planing and a GaAIAs diode laser (809 nm) had significantly greater reductions in tooth mobility, pocket depth, and clinical attachment loss compared with those treated by scaling and root planing alone.23 Borrajo and colleagues found that periodontal pockets treated by an InGaAsP diode laser (980 nm) exhibited significantly lower papillary bleeding index and gingival index compared with periodontal pockets treated by scaling and root planing alone.24 Laser radiation offers several advantages over scaling and root planing in that it can be delivered to the apical extent of deep periodontal pockets or other areas such as furcations where scaling and root planing is less effective, and, as opposed to antibiotics, it does not engender bacterial resistance or systemic side effects.

In the diode laser study discussed in this article, the authors reported that reductions in plaque were similar around laser-treated teeth and non-laser-treated teeth. Therefore, the reduction of A. actinomycescomitans appeared not to be related to scaling and root planing but to scaling and root planing plus use of the laser. This finding suggests that the diode laser resulted in a "less pathogenic plaque, particularly in view of the finding that the gingival health improved more rapidly in the laser-treated group. In this study, a less pathogenic dental plaque could be the result of significant decreases in the numbers and proportion of A. actinomycescomitans in the laser-treated group. The improved wound healing noted in this study could also be due to the inhibition of inflammatory mediators such as prostaglandin E2 (PGE2), as previously reported following the use of diode lasers. For example, Sakurai and colleagues found that diode laser irradiation significantly inhibited cyclooxygenase gene expression and PGE2 production from lipopolysaccharide-challenged human gingival fibroblasts in vitro. Shimizu and colleagues reported that periodontal ligament cells mechanically stretched in vitro produced significantly less PGE2, and interleukin-1β following irradiation with a diode laser, compared with nonirradiated controls. Mizutani and colleagues reported that an 830 nm diode laser at 1 W resulted in a significant decrease in serum levels of PGE2, and analgesic effects in 67 of 83 (80.7%) orthopedic patients.25 These findings of the effect on A. actinomycescomitans have been reported by others using the diode laser in periodontal pockets.6,11 As noted in the study discussed above, diode laser treatment resulted in a significant reduction in the total number of colony-forming units and in the proportion of subgingival A. actinomycescomitans. A. actinomycescomitans causes certain forms of periodontal disease, such as aggressive periodontitis, and may also be important in systemic diseases. Haraszthy and colleagues demonstrated the presence of periodontal pathogens including A. actinomycescomitans in atherosclerotic plaques,26 and there are recent data suggesting that subgingival A. actinomycescomitans may be related to coronary heart disease. Further, a high percentage of periodontal pockets harbor A. actinomycescomitans that is resistant to antibiotics such as the tetracyclines.27

For all these reasons, the management of A. actinomycescomitans–infected periodontal pockets by local physical methods such as laser treatment is particularly attractive. Treating periodontal pockets infected with A. actinomycescomitans offers special challenges compared with treating periodontal pockets infected with other pathogens. Whereas many species of periodontal pathogens are susceptible to mechanical débridement during scal-
ing and root planing, A. actinomycetemcomitans can invade the pocket epitheli-
num and subjacent connective tissue, making it especially difficult to
 eradicate. Accordingly, the recommended treatment of A. actinomycetemcomi-
tans-associated periodontitis includes adjunctive antibiotic therapy to eliminate
the bacteria not removed by mechanical débridement.

Therefore, the reduction of A. actinomycetemcomitans appeared not to
be related to scaling and root planing but to scaling and root planing
plus use of the laser.

Comment

A recent study using a diode laser in conjunction with scaling and root planing
suggests that the application of the laser to periodontal pockets may have
beneficial effects on the pocket microflora by reducing A. actinomycetemcomitans
better than scaling and root planing alone. Since the
treatment of A. actinomycetemcomitans—infected periodontal pockets frequently
necessitates the use of adjunctive antibiotic therapy, the Odyssey 810 diode
laser may offer a supplemental means of eliminating this pathogen from
periodontal pockets.

Diode laser treatment resulted in a significant reduction in the total
number of colony-forming units and in the proportion of subgingival
A. actinomycetemcomitans.

Wang Z, Ding Y, Wu Y. The effect of pulsed Nd:YAG laser used is an adjunct to
subgingival scaling and root planing. Hua Xi Kou Qiang Yi Xue Za Zhi 2003;

lar or scaling and root planing. A 2-year follow-up split-mouth study. J Periodontol
2003; 74:590–596.
Kreisler M, Al Jah H, d’Hoedt B. Clinical efficacy of semiconductor laser
application as an adjunct to conventional scaling and root planing. Lasers Surg Med
Borrajo JL, Varela LG, Castro GL, et al. Diode laser (980 nm) as adjunct to
Harris DM, Yessik M. Therapeutic ratio quantifies laser antisepsis: ablation of
Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of low-level laser irradiation
on LPS-stimulated prostaglandin E₂ production and cyclooxygenase-2 in human
Shimizu N, Yamaguchi M, Goseki T, et al. Inhibition of prostaglandin E₂, and
 interleukin-1 beta production by low-power laser irradiation in stretched human
Mizutani K, Musya Y, Wakah K, et al. A clinical study on serum prostaglandin E₂,
Moritz A, Schoop U, Goharkhay K, et al. Treatment of periodontal pockets with
disease: role of periodontal bacteria and importance of total pathogen burden in
the Coronary Event and Periodontal Disease (CORONDOT) study. Arch Intern Med
2006; 166:554–559.
subgingival microbiota following systemic or local tetracycline therapy. J Clin
Brissette CA, Fives-Taylor PM. Actinobacillus actinomycetemcomitans may
utilize either actin-dependent or actin-independent mechanisms of invasion. Oral
elimination of Actinobacillus actinomycetemcomitans and Bacteroides gingivalis
Walker C, Karpinia K. Rationale for use of antibiotics in periodontics. J Periodontol

DOI 10.2310/7040.2006.00007

SPECIAL HOLIDAY OFFER

Have you considered giving BTD to your dental colleagues or dental hygienists?

Biological Therapies in Dentistry is the perfect gift for the dental professionals on your list!
Sign up a new 2007 subscription today and we will give you 15% off the 2007 price of $66.00.
In addition, we will extend this special offer to you when you renew your current subscription for 2007.
Now, it's even easier to keep on top of the latest developments in drug therapy in the areas
of clinical dentistry, pharmacology, and oral biology and by taking advantage of this offer you ensure
your dental hygienists and colleagues will too!
To order Biological Therapies in Dentistry for one year at a cost of $56.00 simply call 1-800-568-7281,
or fax this order form to 905-522-7839. Please quote BTD7 when ordering.

Name
Address
Telephone
Email
City/State/Zip
Fax

This is a limited time offer and will expire February 28, 2007.

Please address all editorial correspondence to Dr. Sebastian G. Ciancio, Editor, Biological Therapies in Dentistry, SUNY at Buffalo, 250 Squire Hall, 3435 Main Street, Buffalo, NY 14214-3008; Tel: 1-716-829-3848. Please address all customer service and circulation correspondence to Customer Service, BC Decker Inc, P.O. Box 785, Lewiston, NY 14092-0785, Tel: 1-800-568-7281 (US and Canada), 1-905-522-7017 (Elsewhere); Fax: 1-905-522-7839.

POSTMASTER: Send address changes to Biological Therapies in Dentistry, BC Decker Inc, P.O. Box 785, Lewiston, NY 14092-0785.
© 2006 BC Decker Inc • Biological Therapies in Dentistry